SteelCentral™ NetShark
User’s Guide
Including the virtual edition

Version 10.7
August 2014
Contents

About this guide ... vi

Scope .. vi
Audience ... vi

Chapter 1. Concepts .. 1

SteelCentral NetShark family of products ... 1
User interfaces ... 1
Storage ... 1
Capture jobs ... 1
Traffic classification .. 2
Microflow Indexing ... 3
Advanced traffic metrics calculation and export .. 3
SSL Traffic Decryption .. 3
SteelCentral Packet Analyzer .. 4

Chapter 2. Tasks ... 5

Connecting to NetShark ... 5
 Logging in using a browser ... 5
 Logging in using SteelCentral Packet Analyzer ... 6
 Logging out .. 7
Checking appliance status ... 7
Setting basic appliance parameters .. 8
Configuring data export to NetProfiler .. 9
Configuring data collection ports .. 10
 NetShark appliances ... 10
 NetShark virtual edition ... 12
Capturing network data .. 13
 Viewing capture jobs ... 13
 Adding/editing capture jobs ... 15
Controlling capture jobs ... 18
 Using Packet Analyzer to create capture jobs ... 18
 Exporting packets ... 19
Using SSL Decryption .. 20
 Specifications .. 20
 Entering Decryption Keys .. 20
 Decrypting HTTP traffic using SSL .. 21
Managing users and groups ... 23
 Credential Manager .. 23
Capabilities ... 23
Adding users and groups ... 25
Changing user passwords .. 26
Unlocking a locked-out user ... 27
Setting up the login screen .. 28
Authenticating users .. 29
Managing security functions .. 36
Setting up logging ... 36
Setting up a firewall ... 38
Managing certificates ... 41
Managing the appliance .. 46
Enabling SNMP management .. 46
Setting up notifications .. 48
Using the Packet Analyzer Concurrent License server .. 52
Updating system software .. 53
Performing maintenance functions .. 55
Advanced Configuration Settings ... 58
Updating Pre-defined Port and Port Group Definitions .. 58
Configuring Service Response Time in Port Definitions .. 59
Port definitions .. 60
Port group definitions ... 63
Application definitions ... 64
Advanced settings .. 68
Troubleshooting an initial installation ... 69
Securing your appliance configuration .. 70
Common Criteria initial setup .. 70
Common Criteria operation .. 75
JITC-hardened initial setup .. 76

Chapter 3. Reference ... 79

CLI commands ... 79
Certificate commands .. 80
Interface commands .. 81
License commands .. 81
Service commands ... 82
System commands .. 82
Uptime-report commands ... 84
Clock command .. 84
Wizard command ... 85
Help command .. 85
Exit command .. 85

Appendix A: BIOS settings for NetShark appliances 86
 How to change the BIOS password .. 86
 How to disable booting from removable media 89
About this guide

Scope
This guide covers the Riverbed® SteelCentral™ NetShark family of network products:

- SteelCentral NetShark (NetShark)
- SteelCentral NetShark virtual edition

It tells you how to configure and operate NetShark appliances and NetShark virtual edition. It assumes that your NetShark is ready to receive packets and can communicate on your network. (Instructions for getting your NetShark to that state are provided by the Quick Start Guides for your product.) The configuration and operation activities covered by this guide are performed primarily over the network, rather than through direct console connections to the appliances.

All references to NetShark also apply to NetShark virtual edition, unless otherwise noted.

Audience
This guide is intended for network administrators. It assumes a solid knowledge of computer networking.
Chapter 1. Concepts

SteelCentral NetShark family of products

The NetShark products capture and analyze network traffic. They come in two general forms:

- **NetShark** — rack-mounted standalone hardware devices for capturing and analyzing network packet data
- **NetShark virtual edition** — packet capture and analysis software running as virtual machines in virtual environments

These products capture packets at network speeds up to 10 Gbps. They can also generate Microflow Indexing, described below on page 3. Microflow Indexing provides summary data, allowing for very rapid analysis of some types of network traffic information. In addition, the NetShark products can capture network flow information and forward it to Riverbed® SteelCentral™ NetProfiler for analysis.

User interfaces

Initial configuration of NetShark products is performed through a console interface. This configuration is described in the **Quick Start Guides** for the NetShark and NetShark virtual edition.

Normal operation of the appliances is performed through a web user interface (web interface), which is accessible from a standard web browser or through the Riverbed® SteelCentral™ Packet Analyzer.

Storage

The NetShark products include two separate storage subsystems:

- The OS file system contains the NetShark appliance operating system, software, pcap trace files, View metrics, and Microflow Indexing data for Job Traces and pcap files.
- The Packet Storage subsystem is used by the NetShark Packet Recorder to store job traces. This storage system is optimized to provide high-speed writing to disk and fast read access for arbitrary time intervals within a job trace.

Capture jobs

Network traffic data capture is organized into capture jobs. Capture job parameters specify start times for capture jobs, capture job duration, data filtering, and so on. You will encounter these terms in your work with NetShark products:

- **Capture job**: A capture job refers to the specific parameters associated with a packet recording session. These parameters include the job name, the network interface, a BPF filter, start and stop criteria, and an upper bound on the amount of storage to be used by the capture job.
- **Job trace**: The job trace represents the network traffic saved in the packet storage. Each capture job is associated with exactly one job trace, which has the same name as the capture job.
- **Trace clips**: Trace clips represent user-defined time intervals within a job trace.
- **Jobs repository**: In Packet Analyzer, the Files panel for a NetShark appliance contains a folder called the Jobs Repository that has an icon and the name for each job trace in the appliance.
- **Virtual job device**: In Packet Analyzer, the Devices panel for a NetShark appliance contains an icon and the name for each Virtual Job Device representing the network interface associated with a capture job on the appliance. Views can be applied to these capture job interfaces creating a visual analysis and representation of what was captured by the corresponding capture job.
Each NetShark appliance network interface can support 15 running, non-indexing capture jobs. If any of these jobs include indexing, the number of running capture jobs supported on the interface is 14. An unlimited number of stopped capture jobs can be created.

Traffic classification

In software version 10.5 (and later), traffic classification in SteelCentral NetShark and NetShark virtual edition can provide application-level intelligence in packet capture and analysis, as well as in flow exports. Using the same deep packet inspection (DPI) engine as Riverbed® SteelHead™ appliances, traffic classification uses the following definitions:

- Port Definitions
- Port Group Definitions
- Application Definitions

Application definition is done using Layer 4 Mappings, Layer 7 Fingerprints, and System Applications mappings. Layer 7 Fingerprints have the highest priority in identifying an application, followed by Application Definitions, and Layer 4 Mappings. An “Override” can be set for one or more Layer 4 Mappings, giving these mappings the highest priority in identifying an application.

A view applied to offline files captured before 10.5 uses the Port Names, Port Groups, and Layer 4 Mapping definitions. Layer 7 Signatures and Application Definitions are not retroactive.

When a NetShark exports network flow statistics to a NetProfiler, the Port Definitions, Port Group Definitions, Layer 4 Mappings, and Layer 7 Signatures of the NetProfiler can be synchronized with the NetShark. When synchronization is done, NetShark Port Names, Port Groups, Layer 4 Mappings, and L7 Fingerprints are replaced and permanently lost. Synchronization ensures consistent identification of the traffic traversing your network, for viewing and analysis. In addition, a NetShark can manually synchronize these same configurations with a Packet Analyzer, for use in viewing and analyzing local traffic.

Starting with release 10.6, SteelCentral NetProfiler and SteelCentral NetShark are shipped with the same Port Names, Port Groups, and Layer 4 Mappings configured. New installations of NetProfiler and NetShark also have the new shared Port Names, Port Groups, and Layer 4 Mappings. **Note:** Updating a NetProfiler or NetShark to version 10.6 does not update the existing port and application definitions.

In version 10.6 (and later), when SteelCentral Packet Analyzer connects to a NetShark, a message is displayed if the port names, port groups, L4 mappings, and L7 fingerprints are not the same. The message explains how to correct this if necessary.

Additional Notes:

- When exporting flows to a NetProfiler running a pre-10.5 software version, VoIP metrics are ignored, whether or not DPI is enabled. Only basic flow information is recognized in this case.
- Packet Analyzer does not do DPI classification on local interfaces. Also, DPI views are not allowed on local sources.

From the **Settings** tab on the NetShark web user interface, select **Port Definitions, Port Group Definitions**, or **Application Definitions** to configure and manage traffic classification.
Microflow Indexing

Microflow Indexing (indexing) captures summary information about conversations between devices on the network. This information is all that is needed by Packet Analyzer to calculate many of the View metrics that describe the traffic stream. Because it is already in summary form, processing of Microflow Indexing data for View metrics is very fast.

In simplified terms, the Microflow Indexing process is this: For each packet, there is a conversation identifier consisting of the 5-tuple:

- source IP address
- destination IP address
- IP protocol
- source port
- destination port

When the Microflow Indexing feature is enabled for a capture job, the NetShark appliance computes the total bytes and number of packets for each unique conversation identifier in the traffic stream for each second. This information is stored in a file on the OS disk and is referred to as Microflow Indexing data.

Advanced traffic metrics calculation and export

A SteelCentral NetShark must see both directions of traffic flow on the same physical interface (or vNIC on NetShark virtual edition) to calculate and export the following to a NetProfiler appliance:

- DPI metrics for applications
- VoIP metrics for IP telephony
- Service Response Time metrics for TCP connections

Otherwise, only basic flow metrics are calculated and exported.

The use of a NetShark appliance aggregating interface (TurboCap Board Aggregating Port or TurboCap Aggregating Port) does enable these advanced traffic metrics to be calculated in views and capture jobs, but aggregating ports cannot be configured for export to a NetProfiler.

SSL Traffic Decryption

In software version 10.7 (and later), HTTP traffic encrypted using the SSL protocol can be decrypted when the key exchange algorithm uses RSA keys. Decrypted data are used to calculate traffic metrics for use in Packet Analyzer views. For example, using SSL decryption, the view “Bandwidth Usage > Web > Web Bandwidth - Top Status Codes,” can include metrics for previously unavailable SSL-encrypted traffic.

An administrator assigns a unique server IP address and TCP port to a PEM (Privacy Enhanced Mail)-formatted RSA private key to enter a decryption key. Private keys can only be added or removed and are stored in a secure vault, a separate, encrypted store, on a NetShark appliance, NetShark virtual edition, or Riverbed® SteelCentral™ NetExpress. If a private key includes a certificate, an SHA1 fingerprint is calculated and displayed with the decryption key on the Settings > SSL Decryption page of the NetShark appliance web interface. The creation and use of SSL decryption keys can be audited using NetShark logs and notifications.

Access control to a decryption key is set by assigning groups to the key when it is entered. Group members can decrypt traffic when they apply a view to an interface or a trace file or a trace clip. A group’s eligibility for decryption key use is determined by the capabilities assigned to the group. Group assignments to a decryption key can be edited by an administrator after a key is entered.

Decrypted SSL packets are not stored and cannot be exported or sent outside an appliance. When a request to send packets to Wireshark, Riverbed® SteelCentral™ Transaction Analyzer, a file, or NetProfiler occurs, copies of the packets captured on the network are sent – the packets are not decrypted.
SSL Decryption is not supported on traffic or traces on the local system of a Packet Analyzer. For more information, see “Using SSL Decryption” in Chapter 2.

SteelCentral Packet Analyzer

Packet Analyzer integrates closely with NetShark to provide analysis and display of network data captured by these products. Packet Analyzer is a distributed analysis tool, using NetShark to perform computations and integrating the results for display. This distributed processing saves network bandwidth—only the results, not the underlying packet data, are transferred across the network—and allows Packet Analyzer to manipulate very large packet trace files.

Packet Analyzer contains an extensive collection of network traffic analysis metrics (Views), and can analyze live or offline traffic sources. It allows drag-and-drop drill-down (successive application of Views), visualization and analysis of long-duration and multi-source packet captures, trigger-alert mechanisms, and report generation.
Chapter 2. Tasks

Tasks for NetShark and NetShark virtual edition are very similar, often identical. Differences are noted in the text. Screen shots shown in the following pages may be from either product, except that screen shots from both products are shown in cases where there is a significant difference.

Connecting to NetShark

Connect to a NetShark through its web user interface (web interface). You can do this using your web browser or using Packet Analyzer.

Logging in using a browser

1) Point your browser at https://<NetShark> where <NetShark> is the IP address or DNS name of the appliance.

2) Enter username and password, then click Login button. (Default value is “admin” for both username and password.)

The NetShark web interface is supported on Mozilla Firefox 24.1 ESR and Microsoft Internet Explorer 7/8 and 9. Check that SSL, cookies, and JavaScript are enabled in your browser.
Logging in using SteelCentral Packet Analyzer

When Packet Analyzer is connected to a NetShark probe, you can right-click on the probe in the Devices pane or the Files pane and select “Web Interface” from the context menu.

1) Right-click on the probe.
2) Select Web Interface
3) Enter the Username and Password. (Default value is “admin” for both username and password.)
4) Click the Login button.
Logging out

1) Click to log out.

Checking appliance status

1) Click the Status tab to bring up the Status screen.
Setting basic appliance parameters

The Settings -> Basic Settings screen allows you to change the configuration parameters that you set during initial configuration.

Precision Time Protocol (PTP), IEEE 1588 (version 2) is a software-based implementation. The NetShark is a slave and requires a PTP master on its local area network. You can select which active management interface to use for the PTP communication (default is eth0). Communication is done using UDP ports 319 and 320 over IPv4. When using PTP and NetProfiler export is enabled, a NetShark does not synch with the NetProfiler.

Changes to the Host Name, IP Address, or Timezone parameters require a reboot.

Precision Time Protocol, IEEE 1588v2, requires a master in the Local Area Network and an operating management interface (default is eth0).

The Enable FIPS 140-2 Compatible Cryptography checkbox enables the use of a cryptographic module that has been certified to be FIPS 140-2 compliant (certificate #1747). This mode of operation is referred to as “FIPS mode” for brevity.

1 Important: eth0 and eth1 should not be enabled on the same network.
Configuring data export to NetProfiler

You can configure a NetShark to export network flow statistics to one or two NetProfiler appliances. You can view the configured NetProfiler Export settings and the export statistics on the Status page.

You can specify one BPF filter per interface.

When NetProfiler Export is configured, NetShark uses the configured NetProfiler appliances as NTP servers for time synchronization. When PTP is selected as the time source, it does not synchronize with a NetProfiler.
Configuring data collection ports

Because of product differences between a NetShark and a NetShark virtual edition—one has physical ports, the other does not—separate descriptions of the interface configuration are given below.

NetShark appliances

Interfaces are contained on one or more network interface cards located at the back of the NetShark appliance chassis. Physical ports are grouped into logical boards composed of two ports each. In the example screen below, a card with four ports is represented as two boards with two ports each. Click the Interfaces tab in the NetShark web interface to configure the installed interfaces.

You can configure several parameters for each interface.

Identifying the physical interface (setting Blink)
The Start Blink button causes the LED next to the network interface (located on the back panel of the NetShark appliance) to blink. This can help you positively identify the interface you are configuring.

When you no longer need the LED to blink, turn it off by clicking the Stop Blink button (in the same location).
Name
You can assign a name to a NetShark interface. A 24-character name is displayed as entered. Names longer than 24 characters are compressed when displayed. This name is propagated to all connected Packet Analyzer clients and Profilers. It appears everywhere the interface is referred to in the NetShark web interface. It also appears in references to the interface in Packet Analyzer and NetProfiler. If no name is assigned, the default interface ID appears, for example, tc0.

Description
You can assign a description to an interface, containing helpful information, for example, its location, use, or owner. A 24-character description is displayed as entered. Descriptions longer than 24 characters are compressed when displayed. This description is propagated to all connected Packet Analyzer clients and Profilers. It appears in the NetShark web interface and also in a Packet Analyzer or NetProfiler interface. Where a description is used, if no description is assigned, the supplied default interface description appears, for example, TurboCap 1 GB device n.

Setting Passthru mode
Passthru mode is supported only for 1G copper NICs. When Passthru mode is enabled the two interfaces of a logical board act as a network tap: packets received on one interface are sent out through the other interface, and vice versa. The board can negotiate only one fixed, full-duplex rate on the two ports.

When Passthru mode is disabled the board operates as two independent ports.

Setting Timestamping
The Timestamping parameter lets you select the timing source for data captures made by the interface. Timestamping settings can be modified only on an interface where no capture job has been defined.

When timestamping is set to NetShark Internal, capture packets are timestamped using the NetShark appliance’s internal clock reference. The other options use the internal clocks of the selected network tap, eliminating any latency and improving timestamp precision. Make sure to select the timestamping mode corresponding to the tap the interface is physically connected to; otherwise you may get unpredictable results (false packets, false timestamps, dropped packets, and so on).
Setting the Timestamping parameter gives you the highest level of timing accuracy at a capture interface. Timestamping can help maintain accuracy when analyzing packet flows using Multi-Segment Analysis with Packet Analyzer.

Eliminating packet redundancy (setting Deduplication)

If the NetShark appliance is receiving packets from more than one source in the same network (by using a SPAN port or an aggregating tap, for example), it may receive some of the packets more than once. Enabling Deduplication causes the appliance to discard the duplicate packets, allowing for more accurate traffic analysis.

Note that Deduplication consumes additional resources, and may affect performance in a busy network. Deduplication applies only to one single physical interface. It does not deduplicate packets from multiple turbocap ports.

NetShark virtual edition

One interface, mon0, is preconfigured and is installed as part of the deployment process. You can add up to three additional interfaces after deployment. Interfaces are assigned to logical boards, one interface per board. The example screen below shows a typical configuration with a single interface.

There are no parameters to set for the interfaces on a NetShark virtual edition.

1) Click the Interfaces tab.
Capturing network data

Viewing capture jobs

For quick capture job status, look on the Status page.

Click the Status tab to see quick job status.

The Status page updates the capture statistics periodically. Click the Status tab to update the page manually. For more detail, go to the Job Details page for a particular job, as described below.
1) Click the Capture Jobs tab.

2) Click the Job Name or the View or Edit buttons to see the Job Details.

Job statistics

Job settings
Adding/editing capture jobs

1) Click the Capture Jobs tab.
2) Click Add a New Job to add a job or click Edit to edit an existing stopped job.
3) Enter/adjust capture job parameters. (See details below.)
4) Click to save capture job configuration.

The parameters of an existing job can be edited only if the job is stopped.
Capture settings

Enter a job name.

Select an interface.

Enter a BPF filter, if desired.

Set the maximum number of bytes saved for each packet —the *snaplen*. (Specifying 65535 captures the entire packet.)

Click to enable Microflow Indexing.

Click to enable DPI metrics.

Click to start the job as soon as you save the job parameters.

A BPF filter can select a subset of network traffic for capturing. For example, the filter `src host 192.168.43.17` captures only packets with a source address of 192.168.43.17. You can find more information on BPF filters at http://wiki.wireshark.org/CaptureFilters.

Data Retention settings

Note: Retention criteria are evaluated after each 128 MB capture block, then enforced.

Specify the amount of packet data to save.

Specify the maximum amount of indexing data to save.

Click to synchronize indexing with packet recording.

Note that a NetShark appliance stores packet data on its RAID array and stores Microflow Indexing data on the system drive.

Specify the amount of storage to reserve for packet data, either in bytes or as a percentage of the packet storage size. Additionally, you can specify a maximum amount of packets to store or a maximum time interval to record. After a limit is reached, the oldest packets are discarded as new packets arrive.
Microflow Indexing

Microflow Indexing computes summary data for conversations between devices on the network. (See [Microflow Indexing](page 3) for more information.) Its behavior depends on the states of two checkboxes, both on the Add New Job page.

<table>
<thead>
<tr>
<th>Checkbox Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Enable Indexing] ![Synchronize With Packet Recording]</td>
<td>No Microflow Indexing data will be collected. This is generally reserved for cases where the indexing computation affects the performance of packet capture.</td>
</tr>
<tr>
<td>![Enable Indexing] ![Synchronize With Packet Recording]</td>
<td>If indexing is enabled but not synchronized with packet recording, the amount of indexing data stored on the disk is determined by the amount of storage allocated (bytes or percentage of disk space) or the time interval (days). When the space or time limit is reached, the oldest index summaries are discarded as new ones arrive. Indexing time is typically set to be significantly longer than packet recording time since it consumes much less storage.</td>
</tr>
<tr>
<td>![Enable Indexing] ![Synchronize With Packet Recording]</td>
<td>The duration of Microflow Indexing is kept synchronized with that of packet capture. This ensures that all Packet Analyze Views of the network traffic—both those that use only the indexing data and those that require only packet data—are available for the entire time period. It likely limits the amount of indexing data that can be retained, however.</td>
</tr>
</tbody>
</table>

Start / Stop settings

Capture stops after the first limit of any type is reached.

These settings are not available if Microflow Indexing has been enabled for the capture job.
Controlling capture jobs

Capture jobs start or stop automatically under certain circumstances:

- You checked the Start New Job Immediately check box when setting up the job, and then clicked the Save button.
- A preset Absolute Start/Stop Time is reached.
- The job matches a “Stop capturing after” rule (storage space, number of packets, or elapsed time).

You can control jobs manually using the buttons on the Capture Jobs page. Note that the buttons change according to the status of the job.

Using Packet Analyzer to create capture jobs

Packet Analyzer is well integrated with NetShark, and provides a broad array of methods for interacting with capture jobs. This combination of hardware and software gives you the best means of analyzing traffic on your network and troubleshooting network problems.

For full information on using this hardware/software combination to set up capture jobs, please see the “NetShark Packet Recorder” section of the SteelCentral Packet Analyzer Reference Manual.
Exporting packets

You can export packets from a capture job to a file on your local system.

1) Click the Capture Jobs tab.

2) Click a job name or a View or Edit button to bring up the Job Details page.

3) Set the packet export Start/End parameters (time and/or size).

4) Set export file format and time resolution.

5) Click to prepare export.

6) Click to download.
Using SSL Decryption

In software version 10.7 (and later) HTTP traffic encrypted using the SSL protocol can be decrypted when the key exchange algorithm uses RSA keys, as specified below.

Specifications

SSL/TLS versions
- SSL v2
- SSL v3
- TLS 1.0
- TLS 1.1
- TLS 1.2 (limited to AES CBC)

Private Keys
- Type: RSA
- Format: PEM
 - PKCS#1
 - PKCS#8
 - plaintext or password encrypted
- Supported key lengths (bits): 128, 256, 512, 1k, 2k, 4k, 8k
- Maximum length: 8192 bits
- Maximum number of keys: 512

Certificate Fingerprint Display
- SHA1 digest (if a certificate is included with an RSA private key)

Supported Layer 7 Protocol
- HTTPS

Supported Session Resumption
- Session ID

Entering Decryption Keys

A decryption key contains a server’s RSA private key and optional password; the server’s IP address and a TCP port (IP/port pair); a description; and at least one assigned user group. A maximum of 512 decryption keys can be entered. If a private key includes a certificate an SHA1 fingerprint is calculated and listed with the decryption key information.

Important:
- Each IP/port pair can be assigned to only one private key.
- A private key can be assigned to one or more unique IP/port pairs.

A decryption key must be removed and replaced with a new key if the private key or IP/port pair changes.

Decryption key descriptions and the groups assigned to a decryption key can be edited by an administrator (a user belonging to a group with the “is Administrator” capability).

User Groups and Decryption Keys

Access control to decryption keys is set by a user’s group memberships, as follows:
- Only users belonging to a group with the “is Administrator” capability (administrators) can enter and edit a key. Group members can use any decryption key to decrypt traffic for views. The SSL Decryption page in
the NetShark web interface shows all keys and buttons to add, edit or remove selected keys (private keys can only be added or removed – they cannot be edited).

- Users belonging to a group with “Can Apply Views On Files” and/or “Can Apply Views On Interfaces” capabilities can use decryption keys. Group members can use decryption keys assigned to any groups they belong to for decrypting traffic for views. The SSL Decryption page in the NetShark web interface shows all keys for the groups a user belongs to.
- Users belonging to groups without “is Administrator,” or “Can Apply Views On Files” and/or “Can Apply Views On Interfaces” capabilities cannot use decryption keys and cannot decrypt traffic for views. The SSL Decryption page in the NetShark web interface shows “No Keys Defined.”

Users and groups are configured on the Settings > Users and Groups page of the NetShark web interface. For more information, see “Error! Not a valid bookmark self-reference.” in this document.

Decryption of HTTP traffic using SSL

For decryption, traffic using SSL encryption must meet the following requirements:

- The key exchange algorithm uses RSA keys.
- The captured traffic includes both the client side and the server side of a conversation.
- The capture traffic includes the full initial SSL session establishment sequence.

CAUTION: Views using HTTP metrics can include traffic information and data from SSL-encrypted traffic. Such views may contain decrypted data you do not want disclosed, for example, cookies or web objects. By default, these views can be shared with other groups who would otherwise not be able to see the decrypted data. Administrators can turn off the sharing of views containing decrypted traffic data under “Sharing Views Containing Decrypted Information” on the SSL Decryption page. To disable, uncheck the “Enabled” box under “Sharing Views Containing Decrypted Information” on the SSL Decryption page.

 Note: All shared views containing decrypted data must be unshared or closed before sharing can be disabled.

Check the following before decrypting SSL-encrypted HTTP traffic for views:

- The decryption key is entered on the appliance capturing the traffic or storing the trace file of interest.
- The sharing of views containing decrypted traffic data with other groups who cannot decrypt the traffic in the view (the default setting) has been enabled or disabled as needed.

When a user applies a view:

- If the traffic uses an IP/port pair that matches a decryption key assigned to a group the user belongs to, the packets are decrypted to provide traffic information and data to calculate metrics for the view. NetShark notifications can be sent or log messages triggered when a decryption key is used.
- If a user is not a member of a group assigned to the decryption key, no error is issued and the traffic is not decrypted.

 Note: Decrypted packets are not stored and cannot be exported or sent outside the appliance. Copies of the packets captured on the network are sent to Wireshark, SteelCentral Transaction Analyzer, a file, or NetProfiler – the packets are not decrypted.

Adding, editing, removing, and using SSL decryption keys can be audited. See Settings > Logging Settings in the NetShark web interface and “Setting up logging” for more information. You also can be notified about decryption key activity – see Settings > Notification Settings in the NetShark web interface and “Setting up notifications” for more information.

Important:

- A software update preserves SSL decryption keys.
- A software install (fresh install) deletes SSL decryption keys.
The following illustrates an administrator’s SSL Decryption page in the NetShark web interface and the creation of a decryption key.

Enable/disable sharing views containing decrypted SSL traffic data.

If a private key includes a certificate, the calculated fingerprint is listed here.

SSL Decryption

Sharing Views Containing Decrypted Information

- Allow users to share views that include decrypted data
- Enabled
- Protocol
- Apply

Decryption Keys

<table>
<thead>
<tr>
<th>Server IP</th>
<th>Server Port</th>
<th>Description</th>
<th>Groups</th>
<th>Fingerprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.14.95</td>
<td>442</td>
<td>Internal Web Server J1-412</td>
<td>Administrators</td>
<td>NormalUsers</td>
</tr>
</tbody>
</table>

Add New SSL Decryption Key

- Server IP:
- Server Port:
- Description:
- PEM:
- Password:
- Groups:

Select groups to use decryption key when applying a view.

Server IP address (xxx.xxx.xxx.xxx)

Server TCP port

RSA private key or private key plus certificate

Enter if private key is protected with a password.
Managing users and groups

All communication between the SteelCentral NetShark and the SteelCentral Packet Analyzer uses SSL-encrypted web communications and requires HTTP basic access authentication credentials (HTTP Authentication). The NetShark passes the authentication credentials to the Credential Manager, which determines whether the user has the permission to execute the requested operation. If not, the NetShark returns `not enough privileges` error to the Packet Analyzer making the request.

Credential Manager

The Credential Manager running in the SteelCentral NetShark supports two types of authentication:

- **Local authentication.** The management of credentials is governed by the user configuration file co-located with the NetShark.
- **Remote authentication.** The management of credentials uses an external authentication/auditing server using either the RADIUS or TACACS+ protocols.

Each user has ownership of the resources that the user created, including files, folders, and views that are applied to a traffic source. With the exception of administrators, users cannot see a file or a view created by another user, and a user cannot close a view or delete a file that was created by another user.

Resources, however, can be **shared** among one or more groups. For local authentication, a user can be a member of one or more groups, whereas for remote authentication, a user can be a member of only one group.

Members of a group share a common folder identified with the group name. This folder can be used for trace file sharing, and all the users in the group have read and write access to the folder. When a resource is dragged into this folder, all the other members of the group immediately have access to it.

Views can be shared with other groups by right-clicking on them and selecting **share with**. As soon as a view is shared, the selected group immediately sees it in their sources panel. Note: sharing views is supported only with local authentication.

User and groups are configured using the NetShark web interface.

Capabilities

The web interface is used to configure the capabilities for users and groups. A capability is a privilege that can be granted or revoked, and is specified as an attribute of a group. The SteelCentral NetShark currently implements the following capabilities:

- **IsAdministrator.** Gives members full access to the NetShark. Administrators see all the resources in the system, including views, files and folders that have been created by other users. Administrators have full control of all these resources.
- **CanApplyViewsOnFiles.** Members can apply views to traces files residing on the NetShark, capture jobs and trace clips. In order to apply a view to a capture job or trace clip, the capability **CanAccessProbeFiles** is also required.
- **CanApplyViewsOnInterfaces.** Members can apply views to the interfaces and job interfaces on the NetShark.
- **CanCreateFiles.** Enables members of the group to create files on the NetShark, by selecting **Send to File** in Packet Analyzer.
- **CanImportFiles.** Members can import files into the NetShark through drag and drop or by clicking **Import Files Into Probes** in the Remote Ribbon of Packet Analyzer.
- **CanExportFiles.** Members can export files from the NetShark, and move them to Packet Analyzer or to another NetShark (assuming the user has sufficient capability on the target NetShark to create a trace file). When this capability is not granted, the user is not able to export a trace file to Wireshark, because that involves exporting packets out of the NetShark to Packet Analyzer.
• **CanShareViews.** Members can share the views created on the NetShark with any group on the same appliance. If this capability is not granted, a user can share a view with only the groups to which he belongs.

• **CanAccessProbeFiles.** Members can access capture jobs and trace clips located on the NetShark.

• **CanScheduleWatches.** Members can add a watch on a view or apply a view that has a predefined watch associated with it.

• **CanCreateJobs.** Members can create and manage capture jobs from the NetShark web interface.

Capability policy
Since for local authentication a user can be part of one or more groups, conflicts can arise among the capabilities of the multiple groups to which a user belongs. To solve these conflicts, the NetShark grants a capability if it is enabled for any group of which the user is a member.
Adding users and groups

You must have a username and password to log in to a NetShark. Each username is associated with a user group, and each group has a set of capabilities (privileges). Add new users and groups as follows:

1) Click Settings, then Users and Groups.

2) Click to add User or Group.

Enter username and password.

Select group.

Check box to enable user lockout.

Enter group name and description.

Select capabilities.
Changing user passwords

You can change a user’s password from the Users and Groups page, as follows:

1. Click to bring up the Change Password dialog.

2. Enter new password.
Unlocking a locked-out user

If a user gets locked out due to exceeding the allowed number of unsuccessful login attempts, he will see a message on the login screen like this:

A user with administrator privileges can unlock the account from the Users and Groups page by clicking the **Unlock User** button for that user.
Setting up the login screen

Entries on the Authentication Settings page determine the layout of the login screen for the appliance. Click the Settings tab, then Authentication Settings to go to that screen. Then fill in the screen as follows:

The entries in the screen above produce the login screen shown below.

Information in the **Purpose** field may be logged to a local/remote syslog and/or to a TACACS+ or RADIUS server, depending on the AUTHENTICATION information category’s audit settings. See the section on “Setting up logging” for information on those settings.
Authenticating users

Use the Authentication Settings page to set up the type of authentication used on your appliance. Select an authentication method by checking its check box in the Authentication Methods list. (Details for configuring each authentication method are given below.)

You can choose more than one authentication method. If first method (primary) fails to authenticate, the second method (fallback) is tried, and so on. The first method to succeed is the one that is used for the session. Use the Authentication Sequence drop-down list to choose the order for authentication attempts.
If you have selected a remote authentication method (TACACS+ or RADIUS), the user interface presents additional authentication settings:

- **Default Remote Group**—lets you specify a default group assignment if a remote server (TACACS+ or RADIUS) does not assign an authenticated user to a group.

 When a remote server successfully authenticates a user, it sends attribute/value pairs to the appliance to identify the group to which the user belongs; the user receives the capabilities assigned to that group. (These capabilities are set in the Users and Groups page under the Settings tab.) The Default Remote Group parameter gives you the option to specify a default group to use if the server does not return a group; in that case the user receives the capabilities of the default group. The drop-down box for the parameter lets you choose from all the groups on the appliance; if you choose “none”, no capabilities are assigned to the user.

- **Fallback only when servers are unavailable**—allows you to limit server fallback actions based on the reason for an authentication failure.

 An attempt to authenticate might fail because the user does not present proper credentials or it might fail for technical reasons, such as a server being unreachable. If you leave the “For RADIUS/TACACS+, fallback only when servers are unavailable” box unchecked, any failed authentication attempt causes the appliance to try the next authentication method in the sequence (if there is one). But if you do check the box, the fallback procedure continues only if the failure is due to technical reasons; an authentication failure due to improper credentials stops the authentication process and prevents authentication of the user.

 Note that if you have specified multiple TACACS+ or RADIUS servers, a failure to authenticate for technical reasons causes the appliance to try to authenticate with the next server of the same type. A failure due to improper credentials ends the authentication attempt for that authentication method; the setting of the “Fallback only when servers are unavailable” box determines whether the appliance tries to authenticate using a different method (local, TACACS+, or RADIUS).
For each authentication method you choose, select its tab in the Authentication Parameters section and fill in the parameters (described below).

When you have finished filling in the parameters, click the Apply button in the lower left corner.

Local Password File authentication

This authentication type uses the user information you set up in the Add New User screen. See Adding Users and Groups on page 25. If the username and password match a username and password combination stored in the NetShark, you are logged in to the appliance. The appliance grants you the capabilities of the group you are assigned to.

The Local tab of the Authentication Parameters lets you set various password parameters. Click the Default Settings button to set all parameters to 0 (unconstrained); click the STIG Compliant Settings button to set parameters to values that comply with the Security Technical Implementation Guides (STIG) of the Joint Interoperability Test Command (JITC) of the U.S. Department of Defense.
TACACS+ authentication

If you select **TACACS+ Authentication** on the Authentication Settings screen, click the TACACS+ tab under Authentication Parameters and fill in the parameters.

For servers, specify the IP address and Shared Secret. You can enter up to eight TACACS+ servers.

Fill in the parameters as follows:

- **Server IP address** – IP address of the TACACS+ server. This field accepts only numeric IP addresses; host names are not supported.
- **Server Port** – TCP port the TACACS+ server is listening on. This is pre-configured to port 49.
- **TACACS+ Shared Secret** – Shared secret configured by the TACACS+ protocol, used to protect the communication between NetShark and the TACACS+ server.
- **Client Port** – This field is part of the TACACS+ protocol and it contains the name of the client port used on the NAS server. Please consult the documentation for the TACACS+ server for details on the correct client port to use.
• **Authorization Attribute** and **Authorization Value** – These two fields are used in the authorization step to specify the attribute-value pair used to request a specific service to the TACACS+ server. During the TACACS+ protocol authorization step, NetShark sends the attribute-value pair “Authorization-Attribute=Authorization-Value” to the TACACS+ server. The server uses the pair together with the user-name to identify the user group.

• **Enable TACACS+ accounting** – Enables the remote data accounting on the TACACS+ server.

• **Accounting Attribute** and **Accounting Value** – These two values are used to create an attribute-value pair that NetShark sends to the TACACS+ server together with the accounting data to trace the accounting communication.

• **Accounting Terminator** – This field is specified as the last value in the attribute-value pairs list, and its value may change based on the TACACS+ server in use.

During the authentication process, NetShark sends the user name and password credentials to the TACACS+ server to validate the credentials and indicate the group that the user is a member of. If the credentials are invalid or if the authorized group name received from the TACACS+ server does not match any of the local groups on the NetShark, the authentication will fail. If, however, the user is successfully authenticated and the appliance has been configured with a Default Remote Group, the user receives the capabilities assigned to the default group.

Please note that you must configure the authentication and authorization parameters on the TACACS+ server as well as on the NetShark. These values must be coordinated between the server and the appliance. If they are not, authentication will fail and users will not be able to log in to the appliance.
RADIUS authentication

If you select **RADIUS Authentication** on the Authentication Settings screen, click the RADIUS tab under Authentication Parameters and fill in the parameters.

For servers, specify the IP address and Shared Secret. You can enter up to eight RADIUS servers.

Fill in the parameters as follows:

- **Server IP address** – IP address of the RADIUS server. This field accepts only numeric IP addresses; host names are not supported.
- **Server Port** – TCP port the RADIUS server is listening on. This is pre-configured to port 1812.
- **RADIUS Shared Secret** – Shared secret configured by the RADIUS protocol, used to protect the communication between NetShark and the RADIUS server.
- **Client Port** – This field is part of the RADIUS protocol and it should contain the name of the client port used on the NAS server. Please consult the documentation for your RADIUS server for details on the client port to use.
• **Encryption protocol** – Specifies the protocol used to encrypt data in the path between NetShark and the authentication server. Four protocols are supported:
 - PAP – Basic RADIUS encryption; uses MD5 hashes and XOR
 - CHAP – Challenge-Handshake Authentication Protocol
 - MSCHAP1 – MS CHAP version 1
 - MSCHAP2 – MS CHAP version 2

• **Enable RADIUS Accounting** – Enables remote data accounting on a RADIUS server.

During the authentication process the NetShark sends the user name and password credentials to the RADIUS server. If the authentication is successful, the RADIUS server responds with a one or more attribute-value pairs associated with the local group the user belongs to. The appliance attempts to match the first of these pairs with the configured local groups, and if there is a match the user is authorized with the capabilities assigned to that group.

If the credentials are invalid or if the authorized group name received from the RADIUS server does not match any of the local groups on the appliance, the authentication process will fail. If, however, the user is successfully authenticated and the appliance has been configured with a Default Remote Group, the user receives the capabilities assigned to the default group.

Please note that you must configure the authentication and authorization parameters on the RADIUS server as well as on the appliance. These values must be coordinated between the server and the appliance. If they are not, authentication will fail and users will not be able to log in to the appliance.
Managing security functions

Setting up logging

The Logging Settings page lets you control which system events get logged for auditing purposes. There are 11 categories of information that can be logged, and you can log to local/remote syslogs, to a RADIUS/TACACS+ log, or both. You can find the Logging Settings page at Settings > Logging Settings.

[Logging Settings page screenshot with annotations: Click to set logging for a single category. Click to set logging for all categories.]

Click when done.
To set the logging for an information category, click the drop-down list that corresponds to the category and logging location and select which types of events in that category—all events, errors only, or no events—you want to have logged. To set all information categories for a logging location (local/remote syslog or RADIUS/TACACS+ log) at once, click the drop-down list at the top of the column for that location.

Local logging

Events logged on the local system can be seen by examining the log file at System > Maintenance. Click the Download Log button to save a .TGZ archive of the logs. Once you download and unpack the archive, the syslog files are the files named `messages` and `messages-<datetime>`.

Remote Syslog logging

Release 10.6 (and later) supports sending syslog messages to external servers, including Security Information and Management (SIEM) tools. Configure syslog servers on the syslog tab under Remote Logging Servers. Click **Add New** to add a new server. Click **Apply** when finished to save your changes.

Existing servers can be edited or removed using the same screen. Attempts to add a server a second time are flagged as errors and the existing server entry is preserved.

The TACACS+ and RADIUS tabs provide information on the current accounting configuration on those servers. Accounting changes can be made on the Settings > Authentication Settings page of the web interface.

RADIUS/TACACS+ logging

Events are logged to the TACACS+ or RADIUS server used for authentication. The Accounting configuration, found on the TACACS+ or RADIUS server tabs under Authentication Parameters on the Settings > Authentication Settings page, determines where the logs are located on the server. Note, however, that if you have multiple
Authentication Methods set up, only the first one in the Authentication Sequence can be used for remote logging. (See the “Authenticating users” section on page 29 for a description of the Authentication Methods and Authentication Sequence settings.)

Consider, for instance, an authentication configuration that sets up both TACACS+ and RADIUS as Authentication Methods and specifies an Authentication Sequence of “RADIUS; TACACS+”. Assume that your Remote Log Settings are enabled for All Events.

If an authentication attempt succeeds with the RADIUS server, the logging occurs as expected: events are logged to the RADIUS server.

But if the authentication attempt fails with the RADIUS server and then falls back to the TACACS+ server and succeeds, events are not logged to the TACACS+ server since TACACS+ was not the first authentication method specified in the Authentication Sequence setting.

Setting up a firewall

The Firewall Settings page, available at Settings > Firewall Settings, lets you set up an inbound-only firewall to control access to the appliance. This firewall applies to management interfaces; it does not apply to capture interfaces. The same settings are applied to all management interfaces.

The firewall is disabled by default; check the Enable Firewall Protection checkbox to enable it. The default configuration for an enabled firewall allows access through the web UI from a web browser or a Packet Analyzer console (using HTTPS) or through an SSH console, and allows the appliance to respond to ICMP messages (such as a ping). All other access is denied by default.
The Default Action tells the firewall what to do with a packet that does not match any of the rules. You can set the Default Action to either Allow or Deny.

You can edit existing rules or add new ones. Click the Edit button to edit an existing rule; click the Add New Rule button to add a new rule.
The parameters are the same in both cases. Note that:

- **Actions** can be:
 - Allow
 - Deny
 - Allow And Log
 - Deny And Log

 Logged actions show up in the syslog files. You can download these files using the Download Log button on the System > Maintenance page. After you unpack the archive, you can find logged actions in the messages and messages-<datetime> files.

- **Protocols** can be:
 - ALL
 - TCP
 - UDP
 - ICMP

 If no protocol is specified the rule applies to all protocols.

- For TCP and UDP protocols, the port number can range from 0 to 65535; if no port number is specified, the rule applies to all ports. Service names (HTTP, FTP, and so on) are not allowed in this field.

- **Sources** can be IP addresses in:
 - CIDR notation (192.168.1.0/24)
 - complete IP/mask format (192.168.1.0/255.255.255.0)
 - single host IP address with no mask (192.168.1.23)

 If no IP address is specified, the rule applies to all IP addresses.

 Hostnames are not allowed in this field.

- **Update Table** button enters the rule in the Firewall Rules table, but that no changes are effective until you click the Apply Changes button at the bottom of that table.

 Fill in parameters.

 Click when done.

Note that clicking the Update Table button enters the rule in the Firewall Rules table, but that no changes are effective until you click the Apply Changes button at the bottom of that table.
Rules are evaluated from top to bottom. As soon as a rule is matched, the action for that rule is applied and processing for that packet stops. You can change the order of evaluation by using the blue arrows to move a rule up or down in the list.

Changes are not effective until you click the Apply Changes button at the bottom of the page.

It is possible to configure the firewall in such a way that you lock yourself out of the appliance. If this occurs, you can make a direct connection to the NetShark through the serial port or the keyboard/monitor ports and disable the firewall using the `system firewall disable` CLI command. (See the System commands section on page 82.) Once the firewall is disabled, you can reconfigure it to avoid the problem, and then re-enable it.

Managing certificates

You can manage certificates from the SSL Certificate Management page: Settings > SSL Certificate Management.

There are three types of certificate:

- **Web Interface**—This certifies the appliance’s identity to a web browser or to Packet Analyzer. The default Web Interface certificate is a self-signed certificate generated after the first boot of the appliance. Any subsequent boot uses the same certificate. Each appliance has a unique certificate.

- **NetProfiler Export**—This certifies the appliance’s identity to a NetProfiler when using the NetProfiler Export feature. It is a self-signed certificate. The default certificate is the same on all NetShark and NetProfiler appliances.

- **Trusted NetProfilers**—This certifies the identity of a NetProfiler connecting to this NetShark. By default there are two default Trusted NetProfiler certificates, which allows trusting any NetProfiler using the default certificates.

The SSL Certificate Management page lets you view and replace the certificates. Any changes you make to the configuration are applied after a NetShark Probe service restart.
Click a tab to choose a certificate.

<table>
<thead>
<tr>
<th>Certificate Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issued To</td>
</tr>
<tr>
<td>Common/Name: sharklab.rbbtech.com</td>
</tr>
<tr>
<td>Email:</td>
</tr>
<tr>
<td>Organization: Riverbed Technology</td>
</tr>
<tr>
<td>Organization Unit: Cascade</td>
</tr>
<tr>
<td>Locality:</td>
</tr>
<tr>
<td>San Francisco</td>
</tr>
<tr>
<td>State:</td>
</tr>
<tr>
<td>California</td>
</tr>
<tr>
<td>Country:</td>
</tr>
<tr>
<td>US</td>
</tr>
<tr>
<td>Issued By</td>
</tr>
<tr>
<td>Common/Name: sharklab.rbbtech.com</td>
</tr>
<tr>
<td>Email:</td>
</tr>
<tr>
<td>Organization: Riverbed Technology</td>
</tr>
<tr>
<td>Organization Unit: Cascade</td>
</tr>
<tr>
<td>Locality:</td>
</tr>
<tr>
<td>San Francisco</td>
</tr>
<tr>
<td>State:</td>
</tr>
<tr>
<td>California</td>
</tr>
<tr>
<td>Country:</td>
</tr>
<tr>
<td>US</td>
</tr>
<tr>
<td>Validity</td>
</tr>
<tr>
<td>Issued On:</td>
</tr>
<tr>
<td>Sat, 12 Jul 2014 21:39:36 GMT</td>
</tr>
<tr>
<td>Expires On:</td>
</tr>
<tr>
<td>Sun, 12 Jul 2015 21:39:36 GMT</td>
</tr>
<tr>
<td>Fingerprint</td>
</tr>
<tr>
<td>Algorithm: SHA1</td>
</tr>
<tr>
<td>Value:</td>
</tr>
<tr>
<td>08:00:00:84:51:D4:88:03:82:93:48:90:01:08:84:9C:30:08</td>
</tr>
<tr>
<td>Key</td>
</tr>
<tr>
<td>Algorithm: RSA</td>
</tr>
<tr>
<td>Size:</td>
</tr>
<tr>
<td>2048</td>
</tr>
<tr>
<td>PEM</td>
</tr>
<tr>
<td>View PEM</td>
</tr>
</tbody>
</table>

Click to view the PEM file for the certificate.

On the Web Interface tab, click to re-use the NetProfiler Export certificate/key pair as the Web Interface certificate/key pair.

Click to generate a new certificate/key pair.

Click to import an existing certificate/key pair.

On the NetProfiler Export tab, click to re-use the Web Interface certificate/key pair as the NetProfiler Export certificate/key pair.
To view the PEM file for a certificate, click the View PEM button.

You can import existing certificates that are in PEM format and have either PKCS1 or PKCS8 headers. The general format of these certificates is:

```
-----BEGIN PRIVATE KEY-----
(Base64 encoded data goes here.)
-----END PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
(Base64 encoded data goes here.)
-----END CERTIFICATE-----
```

The two sections can appear in either order. For Web Interface and NetProfiler Export, include both certificate and key. For Trusted NetProfilers, include only the certificate section.

To import an existing certificate, click the Import Certificate button and paste the certificate (and key, if appropriate) in the space provided. Then click the Replace Certificate button.

To generate a new certificate/key pair, click the Generate Certificate button and fill in the parameters.

It is important to make sure that the hostname and domain name are properly configured before generating the new certificate, as the new certificate contains hostname.domainname as the Common Name record. The hostname and domain name are specified on the Settings > Basic Settings page. The Certificate Details for each certificate type on
the Settings > SSL Certificate Settings page show the Common Name record and other records encoded into the certificate.

Click the Replace Certificate button to generate the new certificate/key pair.

To use an existing certificate and private key that are stored on the appliance, click the Use NetProfiler Export Certificate button (from the Web Interface tab) or Use Web Interface Certificate button (from the NetProfiler Export tab). Click the Replace Certificate button to accomplish the replacement.

The default NetProfiler Export certificate for the NetShark appliance is the default_profiler certificate if the appliance is running version 9.5 or earlier software or if the software is version 9.6 or later but the appliance has never been booted in FIPS mode. Once the appliance has been booted in FIPS mode (in version 9.6 or later software), the default_profiler_fips certificate becomes the default NetProfiler Export certificate; it remains the default NetProfiler Export certificate even if the appliance returns to non-FIPS mode, unless you upload a new certificate or generate a new certificate. FIPS mode is described in the section on “Setting basic appliance parameters” on page 8.

Note that if you replace the default NetProfiler Export certificate with a new one (either by importing a certificate or by generating a new one), you need to add that new certificate to the trusted certificates in any NetProfiler to which you will be exporting data. If you change the certificate on the NetShark but not on a NetProfiler, the NetShark will no longer be able to export data to that NetProfiler.
There are two default certificates under the Trusted Profilers tab: `default_profiler` and `default_profiler_fips`. These allow trusting NetProfiler appliances connecting to the NetShark. Buttons on the Trusted NetProfilers tab allow you to view or remove these certificates, or to add new certificates.
Managing the appliance

Enabling SNMP management

From the NetShark web interface go to Settings > SNMP Settings. The NetShark can act as a Simple Network Management Protocol (SNMP) agent, allowing you to access some management information using an SNMP client. The appliance supports the v1, v2c, and v3 versions of the SNMP protocol. The agent allows polling and exports some standard MIBs. For information on available SNMP traps, see “Setting up notifications.”

Check the Enable SNMP box to enable the SNMP agent. Next, choose an SNMP version and fill in the Location, Description, and Contact parameters. If you use v1 or v2c, you can leave the Community string at its default value of “public”; for more security, you can choose a different value.

NetShark 10.5 introduces custom metrics specific for NetShark:

- Job configuration and status
- Flow export configuration and statistics
- Packet storage hardware status

You can read or download the two MIB description files. The RBT-MIB is a MIB common to many Riverbed products. You need not download it if you already have a copy. The SHARK-MIB is the MIB for NetShark appliances. Both MIB files are needed by a MIB browser. Right-click a MIB and save the file locally to enable OID/field-name mapping on your SNMP client.

SNMP v3 does not use a Community string, but offers additional parameters for more security. There are three levels of security for SNMP v3; as you increase the security level, you specify additional passphrases and protocols, as follows:

Username: SNMP security name that the application attempting to browse the MIB must use.
Security level: Choose among:

- No Authentication/No Privacy: SNMP transactions are not authenticated and the SNMP traffic is transmitted in plaintext.
- Authentication/No Privacy: SNMP transactions are authenticated and the SNMP traffic is transmitted in plaintext.
- Authentication/Privacy: SNMP transactions are authenticated and encrypted.

Authentication passphrase: password associated with the username. It must be at least 8 characters long.

Authentication protocol: algorithm used by the authentication protocol. This can be **MD5** or **SHA**.

Privacy passphrase: string used to encrypt SNMP data exchanges. It must be at least 8 characters long.

Privacy protocol: algorithm used to encrypt the SNMP data exchanges. This can be **DES** or **AES**.

Note Certain SNMP configurations are modified when the appliance is switched into FIPS mode (set FIPS mode in **Security Configuration** at Settings > Basic Settings).
Setting up notifications

You can configure the NetShark to alert you by email or SNMP trap when certain events occur. Alert notifications are delivered to recipients. A recipient is one email address and/or one or more trap receiver addresses.

In the Settings > Notification Settings page, start by selecting how the alerts are sent to recipients: email, SNMP trap, or both.

You can choose from the following notifications:

- **Notify whenever there is a job status change.**
 For example, a notification is sent when a new job is started.
- **Notify whenever there is a disk pressure event.**
 When the amount of space available on the OS drive is getting low and views might be closed, a notification is sent.
- **Notify whenever there is a memory pressure event.**
 When running out of memory and views might be closed, a notification is sent.
- **Notify whenever there is a watch event.**
 You can use Packet Analyzer to set up watches on views that trigger events and notifications. A notification is sent when a watch triggers an event.
- **Notify whenever there is a view killed.**
 When a large amount of disk space or memory is being used, a Shark will close views to free up some disk space or memory. Should this occur, this notification is sent.
- **Notify whenever there is an SSL key removed.**
- **Notify whenever there is an SSL key edited.**
- **Notify whenever there is an SSL key added.**
- **Notify whenever a view uses an SSL key to decrypt traffic.**
 A notification is sent the first time a view uses an SSL key. If a second view uses the key, another notification is sent. Each notification includes the title of the view that used the key.
- **Notify every time the system clock is modified.**
 Some errors might occur when a time synchronization protocol modifies the clock. A notification is sent.
- **Notify when link up/down state changes.**
 A notification is sent when a network or management port changes state.
- **Notify whenever there is a change in the packet storage status.**
 A notification is sent every time something goes wrong with the packet storage. The notification will include further details about what disk/s are experiencing problems
- **Notify every time this NetShark is rebooted.**
 A notification is sent every time the NetShark reboots, normally or unexpectedly.
Adding Email Notifications

You can test the configuration by clicking the **Test Email Settings** button; the NetShark will try to send you a test email to verify that the configuration is correct. Click **Apply** to save changes.
Adding SNMP Trap Receivers

Click the **SNMP trap** tab to add and edit SNMP trap receivers.

Note: Be sure to click **Apply** to save any revisions or additions you make to SNMP recipients.
Click **Add** to configure a new trap recipient. Choose the **SNMP Version** used by the recipient. Your choice determines what fields must be entered. Fields that do not apply are grayed out.

Every SNMPv3 Agent has an engine ID that uniquely identifies the agent in an administrative domain. The engine ID is used by the authentication and privacy algorithms when communicating with a client. Check with your network management team for an SNMPv3 trap receiver’s engine id.

Clicking **Save** returns you to the SNMP trap tab. You can now:
- Click **Add** to enter more trap recipients. Edit a new or existing trap recipient by clicking its address.
- Click **Test** to test the parameters of a specific trap recipient by sending it a test trap.
- Click **Delete** to remove a trap recipient.

You must save any change (new, revised, or deleted trap recipients) by clicking **Apply**. If you navigate away from this page before clicking **Apply**, your changes are lost. After clicking **Apply**, a message appears at the top of the page, confirming that your settings have been updated.

Using Traps with SNMPv3

You can set the security level used for traps sent to SNMPv3 recipients using the Security Level setting. Your choices are:
- No authentication/No Privacy
- Authentication/No Privacy
- Authentication/Privacy

If you choose Authentication, you must enter a passphrase of eight characters or more and select an authentication protocol (MD5 or SHA1). If you choose Privacy, you must enter a passphrase of eight characters or more and select a privacy protocol (AES or DES).

Note: If you enable FIPS 140-2 Compatible Cryptography (in **Security Configuration** at Settings > Basic Settings) some settings may change.
Using the Packet Analyzer Concurrent License server

In addition to purchasing licenses for features and capacities on a NetShark, you can purchase a license pack for multiple SteelCentral Packet Analyzer instances. This is activated from the Riverbed licensing web site just as the NetShark licenses. Once it is added to the NetShark, you can license Packet Analyzer instances by configuring the Packet Analyzer to obtain a concurrent license from the NetShark.

This is useful for situations where you have operators on different shifts who may all be using Packet Analyzer at different times. Instead of buying enough licenses for each person to have their own, you might prefer to purchase only enough licenses to cover the largest number of concurrent Packet Analyzer users you anticipate. These serve as a license pool that users can draw from as needed.

Packet Analyzer licenses expire 48 to 72 hours after they are issued. The expiration time is based on UTC and therefore the actual number of hours depends on the time zones of the Packet Analyzer and NetShark. They are automatically renewed if the Packet Analyzer is connected to a NetShark that has Packet Analyzer licenses available.

When you install a license for multiple Packet Analyzer instances, the System > Licenses page adds the number of licenses in the Packet Analyzer Concurrent Licenses section at the bottom. This section lists the total number of Packet Analyzer licenses available and the number currently in use. Information on each license currently in use follows.

<table>
<thead>
<tr>
<th>License Key</th>
<th>Status</th>
<th>Description</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>LK1-CPBL-3F83-3F87-5-6A43</td>
<td>VALID</td>
<td>Concurrent license for Packet Analyzer</td>
<td>7/10/2014 14:10:32</td>
<td>7/12/2014 16:39:23</td>
</tr>
</tbody>
</table>
Updating system software

From time to time, Riverbed may make software updates available for the appliance. You can install these updates by uploading an ISO file that is saved on the local system or by fetching the update from the Riverbed support site. Use the screen shown below:

1) Click **System>Update** to open the Update screen.
2) Specify the update source and execute the update.

![Update Screen](image-url)
If you check the “Update to target version immediately…” box, the update is performed as soon as the update file has been transferred to the NetShark. Otherwise the file is saved on the appliance and you perform the update manually by clicking the **Install Update Now** button.
Performing maintenance functions

Click **System > Maintenance** to bring up the **Maintenance** screen. From this screen you can perform the functions listed below.
Gathering system information
The System Info section of the screen presents version information that will be useful when troubleshooting with the assistance of Riverbed Support.

Downloading logs
This section allows you to download various system logs to your local system. It is normally used under the direction of Riverbed Support. There is also a field where you can enter a support case number. If you have opened a support case with Riverbed Support, entering a case number here causes the case number to be inserted into the file name of downloaded archive files.

Viewing packet storage status
The Packet Storage Status section of the screen shows aggregate information for the packet storage disks as well as individual information for each drive. Initially the drive status boxes give a quick summary of the condition of each disk:

- **Aggregate status information**
 - Global Status: OK
 - Total Space: 3.63 TB
 - Available Space: 3.63 TB
 - Used Space: 0 KB

- **Status of individual drives**
 - Disk 0: OK
 - Disk 1: OK
 - Disk 2: OK
 - Disk 3: OK

If you hover the cursor over one of the drive status boxes, you will see a tooltip that gives the status, model number, and serial number for that drive:

- **Drive status details**
 - Disk 2
 - Status: OK
 - Model: WDCWD1003FBYX-01Y780
 - Serial: WD-WCAW30467500

Or, if you want to see that information for all of the drives, click the Expand Disk Information link under the drive status boxes:

- **Global status for the packet storage can be:**
 - OK (all drives are working properly)
 - FAILING (at least one drive is about to fail AND all the others are OK)
 - INOPERABLE (at least one drive has failed or is missing, or the packet storage is down)
 - INITIALIZING (the enclosure is undergoing a reinitialization process)
 - CORRUPTED (the file system is corrupted)

- **Status for an individual drive can be:**
 - OK (the drive is working properly)
 - FAILING (the drive is still operable, but is about to fail)
 - FAILED (the drive has failed—it is not seen by the Shark—or is missing)
 - NEW (a new drive has been inserted, but the packet storage has not been reinitialized)
Reinitializing and reformatting packet storage

Reinitializing or reformatting the packet storage subsystem should be done only under the direction of Riverbed Support. Clicking the Reinitialize Packet Storage button performs a low-level format of the packet storage subsystem. This format takes a considerable amount of time and destroys all data on the subsystem. It ignores the Reserved Space setting (see next paragraph) and formats the entire packet storage subsystem. It is typically used when a drive fails and is replaced. Clicking the Reformat Packet Storage button performs a fast, light wipe of the data; it destroys all data on the packet storage subsystem. The Reformat option honors the Reserved Space setting (see next paragraph).

The Reserved Space parameter is available only on physical NetShark appliances, not on Shark virtual editions. Setting the Reserved Space parameter prevents the use of inner tracks of hard disks that can have slower transfer rates. Setting this value to something other than 0% can in some cases provide more uniform write-to-disk speeds, although it reduces the amount of storage available for packet capture.

Halting and rebooting the system

Clicking Shutdown SteelCentral NetShark shuts down the operating system and powers down the appliance. Clicking Reboot SteelCentral NetShark shuts down the operating system and then reboots the appliance.
Advanced Configuration Settings

These are the paths to the settings discussed in the following topics:

Updating Pre-defined Port and Port Group Definitions

The default port and port group definitions listed below are used in some views. Deleting or renaming these definitions can result in unreliable results when the views are applied. These definitions can be added to or revised to match your network. For example, if you also use a nonstandard port to carry SIP traffic in your network, you can add that port to the sip port name in the port definitions. Or, if none of your SIP traffic runs on the default port, you can replace the default port with the port that you do use. This ensures that views will reliably report the SIP traffic on your network.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Used by</th>
</tr>
</thead>
<tbody>
<tr>
<td>cisco-sccp</td>
<td>Port Name</td>
<td>VoIP Views</td>
</tr>
<tr>
<td>citriximadient</td>
<td>Port Name</td>
<td>Citrix Views</td>
</tr>
<tr>
<td>h323hostcall</td>
<td>Port Name</td>
<td>VoIP Views</td>
</tr>
<tr>
<td>ica</td>
<td>Port Name</td>
<td>Citrix Views</td>
</tr>
<tr>
<td>microsoft-ds</td>
<td>Port Name</td>
<td>CIFS Views</td>
</tr>
<tr>
<td>ms-sql-s</td>
<td>Port Name</td>
<td>SQL Views</td>
</tr>
<tr>
<td>mysql</td>
<td>Port Name</td>
<td>SQL Views</td>
</tr>
<tr>
<td>netbios-ssn</td>
<td>Port Name</td>
<td>CIFS Views</td>
</tr>
<tr>
<td>otv</td>
<td>Port Name</td>
<td>VXLAN Views</td>
</tr>
<tr>
<td>pcoip</td>
<td>Port Name</td>
<td>PCoIP Views</td>
</tr>
<tr>
<td>sip</td>
<td>Port Name</td>
<td>VoIP Views</td>
</tr>
<tr>
<td>Web</td>
<td>Port Group</td>
<td>Web Views</td>
</tr>
</tbody>
</table>
Configuring Service Response Time in Port Definitions

For TCP connections carrying request/response application layer protocols, the following additional Service Response Time (SRT) metrics can be captured:

- Request Transfer Time
- Response Transfer Time
- Request Retransmission Delay
- Response Retransmission Delay
- Service Response Time

Web, Email, and SSH are examples of TCP connections with such request/response application layer protocols.

Application layer protocols carried by TCP that do not support these metrics include:

- Pipelining, for example, HTTP pipelining or CIFS
- Two-way communication, for example, H.323, Citrix, or chat applications

Click the Service Response Time box for a new or existing port definition to include the above SRT metric calculations for an application. SRT metrics are automatically included in TCP flows exported to a NetProfiler.

These metrics can be viewed in Packet Analyzer using views in the “Advanced Time Metrics” folder, located under “TCP” in the “Performance and Errors” view folder. **Note:** The Service Response Time setting can be updated when synchronization of Ports, Port Groups and Application Definitions with a NetProfiler is enabled on the “NetProfiler Export” tab of the web interface.

The following default port definitions have the Service Response Time box checked:

<table>
<thead>
<tr>
<th>Port Name</th>
<th>TCP Port</th>
<th>Port Name</th>
<th>TCP Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftp-data</td>
<td>20</td>
<td>ldaps</td>
<td>636</td>
</tr>
<tr>
<td>ftp</td>
<td>21</td>
<td>rsync</td>
<td>873</td>
</tr>
<tr>
<td>smtp</td>
<td>25</td>
<td>ftps-data</td>
<td>989</td>
</tr>
<tr>
<td>tftp</td>
<td>69</td>
<td>ftps</td>
<td>990</td>
</tr>
<tr>
<td>http</td>
<td>80</td>
<td>imaps</td>
<td>993</td>
</tr>
<tr>
<td>pop3</td>
<td>110</td>
<td>pop3s</td>
<td>995</td>
</tr>
<tr>
<td>sftp</td>
<td>115</td>
<td>ms-sql-s</td>
<td>1433</td>
</tr>
<tr>
<td>nntp</td>
<td>119</td>
<td>ms-sql-m</td>
<td>1434</td>
</tr>
<tr>
<td>epmap</td>
<td>135</td>
<td>ncube-lm</td>
<td>1521</td>
</tr>
<tr>
<td>netbios-ns</td>
<td>137</td>
<td>pdap-np</td>
<td>1526</td>
</tr>
<tr>
<td>netbios-dgm</td>
<td>138</td>
<td>sms-rcinfo</td>
<td>2701</td>
</tr>
<tr>
<td>imap</td>
<td>143</td>
<td>sms-xfer</td>
<td>2702</td>
</tr>
<tr>
<td>ldap</td>
<td>389</td>
<td>sms-chat</td>
<td>2703</td>
</tr>
<tr>
<td>https</td>
<td>443</td>
<td>sms-remctrl</td>
<td>2704</td>
</tr>
<tr>
<td>urd</td>
<td>465</td>
<td>mysql</td>
<td>3306</td>
</tr>
<tr>
<td>lbm-db2</td>
<td>523</td>
<td>postgresql</td>
<td>5432</td>
</tr>
<tr>
<td>imap4-ssl-deprecated</td>
<td>585</td>
<td>http-alt</td>
<td>8080</td>
</tr>
<tr>
<td>submission</td>
<td>587</td>
<td>bacula-dir</td>
<td>9101</td>
</tr>
<tr>
<td>ipp</td>
<td>631</td>
<td>bacula-fd</td>
<td>9102</td>
</tr>
</tbody>
</table>

Notes:

1. A NetShark must see both directions of traffic flow on the same physical port (or vNIC on NetShark virtual edition) to calculate and export the metrics to a NetProfiler.
2. A NetProfiler appliance can provide Round Trip Times if it receives both directions of the connection (from two different NetShark interfaces or from two different NetShark appliances).
3. TCP connection history expires on a NetShark when a long-lived connection is silent for more than five minutes. No SRT metrics are available for that connection.
4. No SRT metrics are available for optimized connections.

Important: If you include ports with TCP connections that do not use request/response application layer protocols, the reported metrics can be distorted and of little value.

Port definitions

By default, non-standard ports/protocols appear as “unknown” in many views. To help identify TCP and UDP traffic in a View you can define the ports used by TCP and/or UDP protocols and assign names to them. Use the Settings > Port Definitions page to:

- Add a mapping of a port to a TCP and/or UDP protocol and assign a name.
- Edit an existing port definition.
- Select Service Response Time metric compilation for a port.
- Delete a port definition.
- View, sort, and filter existing port definitions.

Note: Before making changes to default port and port group definitions, please read “Updating Pre-defined Port and Port Group Definitions” for important information.

![Port Definitions](image)

Note: Modification of port group definitions is disabled when synchronizing their configuration with a NetProfiler. You can continue to search, sort, and filter the definitions.
Adding a port definition

To create a port definition:

1. Go to the Settings > Port Definitions page and click the **Add** button at the bottom of the page. A new row with no name appears at the top of the list (scroll up to the top of the list if you don’t see it).
2. Enter the name for a port as you want it to appear in views and reports. A name can contain alphanumeric, dot (.), and underscore (_) characters.
3. Enter a unique port number. The port number must be between 1 and 65535. If an error is shown for a valid port number, the port definition is a duplicate and not allowed.
4. Click in the **Protocol** column and choose the protocols that the name applies to from the drop-down list.
5. Select or deselect the **Service Response Time** check box to enable or disable the calculation of the service response time metrics for TCP ports.
6. Click **Update** to complete your entry, or **Cancel** to remove it. Unsaved changes are highlighted with a light-yellow background.
7. To enter additional definitions, click the **Add** button at the bottom of the page.
8. Review new and revised definitions that have not yet been saved. Use the **Cancel** button to remove all changes before saving. Revised definitions require use of the **Cancel** button to retain the original definition. Click the red “x” in the **Delete** column to remove a single new definition.
9. Click **Apply** at the bottom of the page to save your changes.

Sorting and filtering definitions

Do the following to sort and filter the list of port definitions:

- Hover over the right edge of a column and click the down arrow to select available sort orders or filters from a drop-down menu.
- Alphanumeric fields can be searched by hovering over **Filters** and entering a search term in the field that appears. The check box is automatically checked and the search result is displayed. Uncheck the **Filters** check box to return to the previous list. Checking the box again repeats the last search.
- Numeric fields can be filtered by hovering over **Filters** and entering the number to search for in the appropriate search type. The check box is automatically checked and the search result is displayed. Uncheck the **Filters** check box to return to the previous list. Checking the box again repeats the last search.

Note: Filters and searches can be applied to the results of a previous search or filtering. To return to the original list, all filters and searches must be unchecked.
Identifying unknown ports

The Network Usage by Port view applied to a live interface shows “unknown” ports in the “Relative Network Usage” tab.

Drill down by applying the Talkers and Conversations > Top Ports view to the selected unknown traffic wedge in the Relative Network Usage chart. The new charts identify TCP and UDP ports by traffic volume. This provides a starting point for updating or making additions to your Port Definitions to better identify traffic in your network.
Port group definitions

The Shark web interface Settings > Port Group Definitions page enables you to map a number of related ports into categories, such as, Email, or Web, providing a more detailed look at traffic on your network. This page allows you to:

- Define a new category of related TCP and UDP ports.
- Edit existing port group definitions.
- View and filter existing port group definitions.
- Delete existing port group definitions.
- Display or hide columns.

Note: A port may appear in more than one port group definition. Starting with release 10.6 (and later), there is no priority in port group definitions. Packets with a port in multiple port groups are mapped to each port group now, not just one. For example, in a bar chart showing port groups, if a packet uses a port that appears in three port groups, three bars are displayed, not one.

Adding a port group definition

1. Go to the Settings > Port Group Definitions page and click the Add button at the bottom of the page. An empty new row appears at the bottom of the list.
2. Enter the name for the port group as you want it to appear in views and reports. A name can contain alphanumeric, dot (.), and underscore (_) characters.
3. Enter the TCP and UDP ports for this definition. A port number must be between 1 and 65535.
4. A list of comma separated ports and port ranges can be entered. For example, 1718–1720, 1731, 1300, 1310–1325
A port can appear in more than one definition. The port is mapped to each group it is a member of.
5. Click Update to complete your entry, or Cancel to remove it. Unsaved changes are highlighted with a light-yellow background.
6. To enter additional definitions, click the Add button at the bottom of the page.
6. Review new and revised definitions that have not yet been saved. Use the Cancel button to remove all changes before saving. Revised definitions require use of the Cancel button to retain the original definition. Click the red “x” in the Delete column to remove a single new definition.

7. Click Apply at the bottom of the page to save your changes.

Filtering definitions

Do the following to filter the list of port group definitions:

- Hover over the right edge of a column and click the down arrow to select available sort orders or filters from a drop-down menu.
- Alphanumeric fields can be searched by hovering over Filters and entering a search term in the field that appears. The check box is automatically checked and the filter result is displayed. Uncheck the Filters check box to return to the previous list. Checking the box again repeats the last filter.
- Columns allows you to select which columns are displayed. Uncheck a box to hide a column.

Note: Filters can be applied to the results of a previous filter. To return to the original list, all filters must be unchecked.

Application definitions

Application definitions examine flows to identify and report application traffic. The following types of application definitions can be made:

- **L4 Mappings** – A user-defined mapping of a specific host or group of hosts using a specific port or group of ports.
- **L7 Fingerprints** – A user-defined mapping of an HTTP request URL or SSL/TLS hostname fingerprint to an application.
- **System Applications** – A read-only pre-defined list of applications that are identified by SteelCentral NetShark and SteelHead.

Deploying a consistent set of definitions for ports, port groups, and applications across Riverbed appliances ensures uniform reporting and analysis of your network traffic. When synchronization is enabled on a NetShark, a NetProfiler that receives exports from a NetShark can share its definitions. Synchronization replaces the definitions on a NetShark with those on the NetProfiler, enabling a NetProfiler to manage and maintain a master list of ports, port groups, and application definitions. See “NetProfiler Export” for information on how to configure NetProfiler synchronization.

L4 Mappings

Application traffic can be identified by the IP addresses of the hosts where an application runs and the ports that an application uses. With this information, you can assign a name to this traffic using an L4 mapping. Traffic on any host or group of hosts in the Hosts field is classified as belonging to the application if it uses any port or group of ports specified in either the TCP Ports or the UDP Ports in a mapping. The name identifies this traffic in Views and reports. NetProfiler also uses the name when reporting that application traffic.
Traffic on any host or group of hosts in the **Hosts** field is classified as belonging to the application if it uses any port or group of ports specified in the TCP or UDP ports fields. For example, suppose there are two hosts in your network running the same application but using two different ports. You can create multiple mappings for the same application name, one identifying application traffic coming from the first host and port and the other mapping identifying the second host and port. For example:

Example L4 Mapping 1

- **Name:** My_app
- **Hosts:** 172.16.0.100
- **TCP Ports:** 40430

Example L4 Mapping 2

- **Name:** My_app
- **Hosts:** 172.16.0.120
- **TCP Ports:** 40440

The above mappings identify the application traffic as involving only particular host-port combinations (i.e., not 172.16.0.100 on TCP port 40440). You can also specify a list of hosts using any of a list of ports as one mapping, and a second list of hosts using any of a second list of ports as another mapping.

Hosts and ports can appear in more than one L4 mapping. In this case, priority is based on the position of the mapping in the list. The mapping closest to the top of the list has the highest priority. In addition, priority can be given to an L4 mapping over Layer 7 Signatures and System Applications by selecting **Override** in the mapping. When **Override** is selected, the L4 mapping is evaluated before Layer 7 Signatures, System Applications and other L4 mappings. When **Override** is not selected, an L4 mapping’s priority is determined by its position in the L4 Mapping list.

Adding an L4 mapping

1. Go to the **Settings > Application Definitions** page and click the **L4 Mapping** tab.
2. Click the **Add** button at the bottom of the page. An empty new row appears at the bottom of the list.
3. Enter the name for the application as you want it to appear in views and reports. A name can contain alphanumeric, dot (.), and underscore (_.) characters.
4. Enter the IP addresses or range of addresses, with or without subnet masks, for the **Hosts**.

A comma separated list of IP addresses. Addresses can include IP addresses using CIDR notation or a subnet mask. For example, 192.168.1.0/24, 192.168.1.1/255.255.255.0, 192.168.9.12
A host or group of hosts can appear in more than one mapping. Priority is based on the mapping’s position in the list. A mapping conflict can be resolved by dragging a mapping up or down in the list, changing its priority. Click **Apply** to save the new list order.

5. Enter the TCP and UDP ports for this mapping. A port number must be between 1 and 65535. A list of comma separated ports and port ranges can be entered. For example, **1024–1029, 1731, 1300, 1310–1325**

A port can appear in more than one mapping. Priority is based on the mapping’s position in the list. A mapping conflict can be resolved by dragging a mapping up or down in the list, changing its priority. Click **Apply** to save the new list order.

6. Click **Update** to complete your entry, or **Cancel** to remove it. Unsaved changes are highlighted with a light-yellow background.

7. To enter additional mappings, click the **Add** button at the bottom of the page.

8. Review new and revised mappings that have not yet been saved. Use the **Cancel** button to remove all changes before saving. Revised mappings require use of the **Cancel** button to retain the original mapping. Click the red “x” in the **Delete** column to remove a single new mapping.

9. Click **Apply** at the bottom of the page to save your changes.
L7 Fingerprints
An L7 Fingerprint identifies application traffic based on a user-defined HTTP request URL or an SSL/TLS hostname fingerprint. A Uniform Resource Identifier (URI) string is specified for each HTTP request URL or SSL/TLS hostname fingerprint.

Creating an HTTP URI
Wildcards can be used at the beginning or the end of a URL fingerprint. When used at the end, a wildcard must appear after the hostname in the URL. For example:

L7FB *.somedomain.com/index.html
L7FE somedomain.com/index.*

Wildcards also can appear at both the beginning and end of a URI string, subject to the restrictions above.

Matching is done using a longest match rule. For example:

When DPI is enabled, the URL http://www.facebook.com/hello/hi.a is analyzed and identified as Facebook traffic.

Next, two L7 Fingerprints are added, using the URI strings below.

L7F1 www.facebook.com/hi.a or */hi.a
L7F2 www.facebook.com/hello/hi.a or */hello/hi.a

Now, when the URL http://www.facebook.com/hello/hi.a is analyzed, it is identified as L7F2 traffic, as L7 Signatures have a higher priority than System Applications or L4 Mappings, and the L7F2 URI has the longest match. Note: if Override is selected in an applicable L4 Mapping it would have the highest priority, ahead of L7 Signatures.

Creating an SSL/TLS URI
A definition must include https://. In an SSL/TLS URI, only the host name is used for traffic classification, so, for example, https://www.foo.com/ and https://www.foo.com/live are exactly the same fingerprint. Port specifications in an IP address are ignored. There is no longest match rule used to select a fingerprint. Instead, the first fingerprint in the list that matches is used. A wildcard character can be used at the beginning of the hostname in an SSL/TLS URI. Here are some examples of valid SSL/TLS URIs:

SSLTLS1 https://www.secure.server.com
SSLTLS2 https://*.mysecureserver.com
SSLTLS3 https://192.168.25.2:443 (port is not processed)
Adding an L7 Fingerprint

1. Go to the Settings > Application Definitions page and click the **L7 Signatures** tab.
2. Click the **Add** button at the bottom of the page. An empty new row appears at the bottom of the list.
3. Enter the name for the application as you want it to appear in views and reports. A name can contain alphanumeric, dot (.), and underscore (_) characters.
4. Enter the URI string for the HTTP request URL or SSL/TLS hostname fingerprint in the **URI** column. For example:

 *parts.com/list
 https://www.mysite.com/

 Note: Matching is done using a longest match rule for HTTP URIs; for SSL/TLS URIs, the first matching fingerprint in the list is used.
5. Click **Update** to complete your entry, or **Cancel** to remove it. Unsaved changes are highlighted with a light-yellow background.
6. To enter additional L7 application fingerprints, click the **Add** button at the bottom of the page.
7. Review new and revised fingerprints that have not yet been saved. Use the **Cancel** button to remove all changes before saving. Revised fingerprints require use of the **Cancel** button to retain the original fingerprint. Click the red “x” in the **Delete** column to remove a single new fingerprint. Click **Apply** at the bottom of the page to save your changes.

System Applications

A NetShark is preconfigured with a read-only set of system applications that can be identified when DPI is enabled on a capture job or a NetProfiler export. The name and a description of each application can be viewed on the Settings > Applications > System Applications tab.

To sort by Name or Description, click on a column heading or hover over the right edge of a column and click the down arrow to select available sort orders from a drop-down menu or columns to display.

Advanced settings

The Advanced Settings page allows modification of the Shark Probe configuration file and should be used only with the assistance of Riverbed Support personnel.
Troubleshooting an initial installation

If you have gone through the initial configuration of your NetShark or NetShark virtual edition and it does not seem to function properly, try the troubleshooting steps below. Remember that the default username and password are admin and admin.

After each step, check again to see whether you appliance is functioning properly.

1. Using the appliance’s console, enter wizard at the console prompt and check that you have the right values for:
 a. IP address
 b. IP subnet mask
 c. IP default gateway
 d. DNS servers
 e. domain name

 If you don’t want to change any of the entries, you can cancel by typing c at the end of the list of questions.

 If you used DHCP to provision your IP address, you can find the value of the IP address by entering interface show eth0 at the console prompt.

2. Try to ping the appliance at the IP address you set up in using the configuration wizard. If that doesn’t work, it indicates a possible network problem. Check your network connections and make sure that your firewall and proxy configurations are correct.

3. Try using your web browser to connect to the web UI of the appliance.

4. If you configured SSH, try connecting with an SSH program like PuTTY.

If those steps fail, contact Riverbed technical support:

Email: http://support.riverbed.com
Phone (U.S. and Canada): 1-888-782-3822
Phone (outside U.S. and Canada): 1-415-247-7381
Securing your appliance configuration

Use the following procedures to make your NetShark appliance compliant with Common Criteria certification (certificate TBD at the time this manual was prepared), JITC hardened, and using FIPS 140-2 compliant cryptography.

Common Criteria initial setup

1) Enable FIPS-compliant cryptographic algorithms by putting the appliance into FIPS mode.
 - **In the CLI**: `system fips enable`
 - **In the web interface**:
 a. Go to Settings > Basic Settings
 b. Put a check mark in the Enable FIPS 140-2 Compatible Cryptography box at the bottom of the page.
 c. Click Apply.

A reboot is required:
 - **In the CLI**: Use `system reboot`.
 - **In the web interface**: Go to System > Maintenance and click the Reboot SteelCentral NetShark button at the bottom of the page.

After the reboot the appliance shows “FIPS Mode” in the banner in the web interface.
1) Make sure that the Web Interface certificate and private key are compliant:
 - Private key algorithm must be RSA.
 - Key length should be at least 2048 bits.
 - Certificate hashing algorithm should be one of:
 - SHA1
 - SHA224
 - SHA256
 - SHA384
 - SHA512

 In the CLI: The certificate and private key can be replaced using `certificate web set`.

 In the web interface: To view the certificate, go to Settings > SSL Certificate Management and click the Web Interface tab. If you need to import or generate a new certificate, use the buttons at the bottom of the page.

 The default certificate and any self-signed certificates generated by the appliance are compliant.

 A NetShark Probe service restart (**CLI:** `service probe restart`, **web interface:** a Restart Probe button pops up) is required for the certificate change to be effective.

2) Make sure that the NetProfiler Export certificate and private key are compliant:
 - Private key algorithm must be RSA.
 - Key length should be at least 2048 bits.
 - Certificate hashing algorithm should be one of:
 - SHA1
 - SHA224
 - SHA256
 - SHA384
 - SHA512

 In the CLI: The certificate and private key can be replaced using `certificate profiler-export set`.

 In the web interface: To view the certificate, go to Settings > SSL Certificates and click the NetProfiler Export tab. If you need to import or generate a new certificate, use the buttons at the bottom of the page.

 When booted in FIPS mode, the default certificate and any self-signed certificates generated by the appliance are compliant.

 A NetShark Probe service restart (**CLI:** `service probe restart`, **web interface:** a Restart Probe button pops up) is required for the certificate change to be effective.

 Note: A NetShark appliance that has never booted in FIPS mode uses a default NetProfiler Export certificate that is compatible with NetProfiler appliances of version 9.5 or earlier. The first time the NetShark appliance boots in FIPS mode, this certificate is replaced with a certificate that is FIPS and Common Criteria compliant and that is compatible only with NetProfiler appliances of version 9.6 or later. If you revert to non-FIPS mode on the NetShark appliance, the version 9.6 certificate remains active; it does not revert to the version 9.5 certificate.

3) Make sure that the Trusted NetProfiler certificate and private key are compliant:
 - Private key algorithm must be RSA.
 - Key length should be at least 2048 bits.
 - Certificate hashing algorithm should be one of:
 - SHA1
 - SHA224
 - SHA256
 - SHA384
 - SHA512
In the CLI: The certificate and private key can be managed using the `certificate profiler-trusted` ... commands.

In the web interface: To view the certificate, go to Settings > SSL Certificates, click the Trusted Profilers tab, and click the View button for one of the listed certificates. If you need to import a new certificate, use the Add button at the bottom of the page.

By default the NetShark appliance contains two Trusted NetProfiler certificates: `default_profiler` and `default_profiler_fips`. The `default_profiler` certificate is compatible with appliances with software version 9.5 or earlier, or appliances with version 9.6 or later software that have never been booted in FIPS mode; this certificate is not compliant. The `default_profiler_fips` certificate is compliant. For operation in FIPS mode, you must remove the `default_profiler` certificate. In the CLI: Use `certificate profiler-trusted del`. In the web interface: Use the Remove button next to `default_profiler` in the list of certificates.

If you make any changes to the certificates, you must restart the NetShark Probe service (CLI: `service probe restart`; web interface: a Restart Probe button pops up).

4) Make sure that authentication is set to Local Authentication. (The TACACS+ and RADIUS implementations use algorithms that are not FIPS compliant.)

In the web interface: On the Settings > Authentication Settings page, make sure the Local Password File Authentication check box is checked and the TACACS+ and RADIUS check boxes are unchecked.

If you make any changes, click the Apply button at the bottom of the page.
5) Configure all users, including the administrator, to have a lockout policy.

In the web interface:

a. From Settings > Authentication Settings, on the Local tab, make sure that the “Number of unsuccessful login attempts before user is locked out” is set to a number between 0 and 10.

b. When creating a user (in Settings > Users and Groups, click the Add A New User button), make sure that the “User Can Be Locked Out” checkbox is checked.

Note: The default users (admin, normaluser) do not have the lockout property enabled. Since it is not possible to change that property on an existing user, you must delete the existing user entry and recreate it with the lockout property enabled. For the “admin” user, first create another, temporary, admin user (say, “admin2”) and use that temporary admin user to delete and recreate the “admin” user.
6) Change the Logging Settings to log all events to the local syslog.

In the web interface: Go to Settings > Logging Settings. In the Local/Remote Syslog Settings column, set the top drop-down box to All Events. This sets all categories of events to be logged locally. (There is no need to change the RADIUS/TACACS+ Log Settings box, as remote logging to TACACS+ and RADIUS servers is not officially supported in the Common Criteria compliant mode of operation.)

7) Make sure that these specific Advanced Settings have appropriate values.

In the web interface: From Settings > Advanced Settings, make sure that the following settings are configured as described. Once the appliance is booted in FIPS mode these settings cannot be changed.

- `webui.legacy_port=0`
- `connection.ports.https=443`
- `connection.ports.http=80`
- `connection.ports.http_redirect=True`
- `webui.enabled=True`
- `profilerexport.profiler.port=41018`
- `profilerexport.profiler.ssl.enabled=True`
- `profilerexport.profiler.ssl.port=41017`
- `actions.enable_run_program=False`

Note that any setting that is not listed under Advanced Settings has a value corresponding to the list above. (This applies to `actions.enable_run_program`, which is not listed.)

10) Disable SSH access, as its use has not been certified for Common Criteria.

In the web interface: Go to Settings > Basic Settings and make sure that the Enable Secure Shell (SSH) Access box is unchecked. If you make a change, click the Apply button in the lower left corner of the page.

Common Criteria operation

Packet Analyzer
- Do not use Packet Analyzer to analyze local files or to analyze traffic from local interfaces. There is no authentication and auditing when analyzing local files and traffic.
- Do not tick the “Remember password” check box when connecting to a NetShark appliance. Starting with version 10.7, the password is encrypted and saved on the client system running Windows.
- Do not use SMTP with authentication when configuring a watch that sends an email. The password would be saved in clear text on the Shark appliance.
- Do not use the SSL protocol when configuring a watch that sends an email. There is no auditing on this cryptographic functionality.

NetShark appliance
- Do not change any of the settings listed below. Changing any of the following settings when FIPS mode is enabled is prohibited.
 - webui.legacy_port=
 - connection.ports.https=
 - connection.ports.http=
 - connection.ports.http_redirect=
 - webui.enabled=
 - actions.enable_run_program=
 - profilerexport.enabled=
 - profilerexport.profiler.port=
 - profilerexport.ssl.enabled=
 - profilerexport.profiler.ssl.port=
 - profilerexportprofilers.address.*=

Changing any of these settings when FIPS mode is enabled results in a failure, as it would violate either secure communication or auditing requirements.
JITC-hardened initial setup

1) Put the appliance into Common Criteria compliant mode. Refer to the list of instructions under “Common Criteria initial setup” on page 70, above.

2) Disable the IPMI port. The IPMI port does not use secure channels. Note that this does not apply to a NetShark virtual edition, as a NetShark virtual edition does not have IPMI ports.

 In the CLI: Use `system ipmi disable`.

3) Set compliant password requirements.

 In the web interface: Go to Settings > Authentication Settings. In the Local tab, click the STIG Compliant Settings button, then click Apply.

4) Change the default boot password.

 In the CLI: Use `system boot password`.

5) Change the default BIOS password. See the section on “How to change the BIOS password” on page 86 for more information.

6) Change the web/CLI default user passwords.

 In the web interface: Go to Settings > Users and Groups and for each user click the Change Password button and change the password.
7) Set up a login banner.

In the web interface: Go to Settings > Authentication Settings and configure a login banner. Click the Apply button when done.

![Authentication Settings](image)

Enter text for login banner.

8) Enable the firewall. The default settings are compliant.

In the web interface: Go to Settings > Firewall Settings and make sure the Enable Firewall Settings box is checked. If you make a change, click the Apply Changes button when done.

![Firewall Settings](image)

Check this box.

9) Configure the idle timeout for the web interface to 10 minutes or less.

In the web interface: Go to Settings > Authentication Settings and set the Session Timeout to 10 minutes or less. Then click the Apply button at the bottom of the page.

![Authentication Settings](image)

Set to 10 minutes or less.

10) Configure authentication for your NTP servers. You need to use a secure hashing algorithm and key for each NTP server to be compliant.

By default, NTP server listings show only the server (as a URL):

```
server1
server2
server3
server4
```
To use secure hashing, add an index, an algorithm, and a key for each server:

server1:index1:algorithm1:key1
server2:index2:algorithm2:key2
server3:index3:algorithm3:key3
server4:index4:algorithm4:key4

Note that:

- When using NetProfiler Export, the NetShark appliance uses the NetProfiler appliance as the NTP source, and no additional configuration is required.
- You can configure NTP servers only when export to NetProfiler appliances is disabled.
- The index field must be unique within the NetShark appliance. It is provided by the administrator of the NTP server.
- Valid values for the algorithm are MD5 and SHA1. These values are not case sensitive.

Note also that:

- When in non-FIPS mode the NetShark appliance uses MD5-based NTP authentication with the NetProfiler appliance.
- When in FIPS mode the NetShark appliance uses SHA1-based NTP authentication with the NetProfiler appliance.

In the CLI: Use the `wizard` command, and in the NTP server specification step enter the server, index, algorithm, and key information for each server.

In the web interface: Go to Settings > Basic Settings and enter the NTP server information in the NTP Server Addresses box. Then click the Apply button.

When the settings have been updated, the keys will be hidden.

11) Change the BIOS settings to disallow booting from removable media. See the section on “How to disable booting from removable media” on page 89.
Chapter 3. Reference

CLI commands

These commands are available through the console interface of a NetShark:

- `certificate profiler-trusted add`: Add a new trusted NetProfiler certificate
- `certificate profiler-trusted del`: Remove the given trusted NetProfiler certificate
- `certificate profiler-trusted list`: List all trusted NetProfiler certificates
- `certificate profiler-export set`: Replace the encryption key used by NetProfiler export
- `certificate web set`: Replace the encryption key used by the web UI
- `challenge create`: Create a new challenge
- `challenge response`: Validate the response of a challenge
- `interface show eth0`: Print network settings for eth0
- `interface show eth1`: Print network settings for eth1
- `interface show ipmi`: Print network settings for the IPMI interface
- `license add`: Add a new license
- `license del`: Delete a license
- `license clear`: Clear all licenses
- `license list`: List all licenses
- `service probe restart`: Restart NetShark Probe service
- `service packetrecorder restart`: Restart the Packet Recorder
- `service mgmt restart`: Restart the Management Daemon
- `system boot password`: Reset the boot password
- `system fipsmode enable`: Enable FIPS mode
- `system fipsmode disable`: Disable FIPS mode
- `system fipsmode show`: Show the current FIPS status and the status at the next reboot
- `system firewall disable`: Disable the system firewall
- `system firewall status`: Show the current status of the firewall
- `system ipmi enable`: Enable the IPMI interface
- `system ipmi disable`: Disable the IPMI interface
- `system log upload`: Upload system logs to FTP server
- `system poweroff`: Power off SteelCentral NetShark
- `system reboot`: Reboot SteelCentral NetShark
- `system serial show`: Show the SteelCentral NetShark serial number
- `system vault wipe`: Wipe and re-initialize the secure key vault
- `system version show`: Show the software version and build numbers
- `system wipe`: Wipe off all the data from the disks
- `uptime-report enable`: Enable the uptime reports
- `uptime-report disable`: Disable the uptime reports
- `uptime-report status`: Check on the uptime reports status
- `clock set`: Set the system date and time on a physical NetShark
- `wizard`: Start a wizard for basic settings
- `help`: Display this help
- `exit`: Exit the shell
Certificate commands

certificate profiler-trusted add <trusted-key-name>

Adds a new Trusted NetProfiler certificate. The `<trusted-key-name>` appears as the name of the certificate when you list the Trusted NetProfiler certificates using the `certificate profiler-trusted list` command (described below) or when listing them in the web interface.

certificate profiler-trusted del <trusted-key-name>

Deletes the specified Trusted NetProfiler certificate.

certificate profiler-trusted list

Lists all Trusted NetProfiler certificates.

certificate profiler-export set

Replaces the certificate and private key used for NetProfiler Export. When you run this command, the CLI prompts you to type (copy and paste) the PEM version of the certificate and private key into the command line.

certificate web set

Replaces the certificate and private key used by the Web Interface. When you run this command, the CLI prompts you to type (copy and paste) the PEM version of the certificate and private key into the command line.
Interface commands

interface show eth0
interface show eth1
interface show ipmi

These commands show useful information about the appliance’s various Ethernet interfaces.

An example of the output:

```
shark> interface show eth0
mac address : 00:25:90:0E:2E:82
ip address : 10.5.16.59
netmask : 255.255.255.0
broadcast : 10.5.16.255
dhcp : enabled
link status : up (100Mbps full duplex)
[OK]
```

License commands

license add <license-key>

Adds a new license to the appliance.

license del <license-key>

Deletes the specified license from the appliance.

license clear

Deletes all licenses from the appliance.
license list

Lists all licenses on the appliance.

To make the changes effective, you must restart the Shark Probe service after issuing these commands:

- license add <license-key>
- license del <license-key>
- license clear

You can use the service probe restart command for this purpose.

Service commands

The service commands act on the main services running on the NetShark. They do not reboot the appliance. If you want to reboot the appliance, use the system reboot command.

service probe restart

Restarts the NetShark Probe service.

service packetrecorder restart

Restarts the Packet Recorder service.

service mgmt restart

Restarts the Management Daemon.

System commands

system boot password

Resets the system boot password. You will be asked to enter a password and to confirm it.

system fipsmode enable

Enables the use of FIPS 140-2 compliant cryptography. This change takes place at the next system reboot.

system fipsmode disable

Disables FIPS mode. This change takes place at the next system reboot.
system fipsmode show

Shows the current FIPS status and the status after the next system reboot.

system firewall disable

Disables the system firewall. This is the emergency command you can use if you lock yourself out of the NetShark. You would enter it from a terminal (or terminal emulator) connected through the serial port or the keyboard/monitor ports, and then reconfigure the firewall from the web interface to fix the problem.

system firewall status

Shows the current status of the system firewall.

system ipmi enable {dhcp}|{ipaddr <addr> netmask <mask>}

Enables the IPMI interface. You must specify DHCP address assignment or specify an IP address and subnet mask.

system ipmi disable

Disables the IPMI interface. Note: The IPMI interface is disabled by effectively setting its IP address to 0.0.0.0.

system log upload [<case_number>] [server <server_path>] [level <log_level>]

Uploads a .tgz file of system logs to FTP or SCP server. If called without parameters it generates the logs with log level "current," case number “000000” and uploads them to ftp://anonymous:anonymous@ftp.riverbed.com/incoming. Confirmation is asked before command is processed.

<case_number> must be numeric.
<server_path> must include protocol (ftp:// or scp://), credentials, the server name and the path where the logs will be stored. Example: ftp://user:password@my.ftp.server/path/to/file.
<log level> can be current, probe, packetrecorder, or complete.

Log file's name is case-XXXXXX-sharkdebug-LLLLLL-shark-yyyyymmdd-hhmmss.tgz

system poweroff

Powers off the appliance.

system reboot

Reboots the appliance.

system serial show

Shows the serial number of the appliance.

system vault wipe

Reinitializes the secure key vault. This erases all data in the vault, recreates the folder structure, and generates SSH keys. In the process, the Web Interface certificate, the NetProfiler Export certificate, and the Trusted NetProfiler certificates are all erased and reset to their default values. A reboot is required after this operation.

system version show

Displays the current software version and build numbers.
system wipe {dod | dodshort | short}

Restarts the appliance with a custom kernel that securely wipes all data from the disks. Choose one of three wipe options:

- **dod** — 7 passes, random data (most secure), DoD 5220.22-M standard wipe
- **dodshort** — 3 passes, random data, DoD 5220-22-M short wipe (passes 1, 2, and 7 of the standard wipe
- **short** — 1 pass, all zeros

Note that:

- It takes a long time for the wipe operation to complete, during which time the appliance is reachable only from the monitor and keyboard. Therefore, it is strongly recommended that you run this command locally from the monitor/keyboard.
- After the wipe operation is complete, the appliance software needs to be reinstalled, as the OS drive has been wiped during the operation.

Uptime-report commands

uptime-report enable

Enables the uptime ping service. It is enabled by default.

uptime-report disable

Disables the uptime ping service.

uptime-report status

Shows the status of the uptime ping service.

For more information on the uptime ping service, see https://support.riverbed.com/announce/dns.htm.

Clock command

clock set {<yyyy/mm/dd> <hh:mm:ss>}

Sets the system time and date for a physical NetShark by specifying the date (year, month, day) and the time (hour, minutes, seconds). A system reboot is required to set the date and time.

Example:

```
NetShark> clock set 2014/07/15 14:20:00
Ready to set system time to 2014-07-15 14:20:00.000000
A reboot is required in order to set the system time.
Are you sure? [y|n]
```

A NetShark virtual edition uses the date and time set in the host.
Wizard command

wizard

Runs the setup wizard for a NetShark. This leads you through setting up initial configuration parameters, including:

- hostname
- IP addressing for the eth0 and eth1 ports
- DNS servers
- domain name for the appliance
- time zone
- SSH daemon
- PTP and management port used
- NTP servers

You can find details on the wizard in the *Quick Start Guide* for the NetShark or the NetShark virtual edition.

Help command

help

Displays the list of CLI commands.

Exit command

exit

Exits the CLI.
Appendix A: BIOS settings for NetShark appliances

How to change the BIOS password

1) Reboot the appliance and be ready to press DEL in order to enter the BIOS SETUP UTILITY.

![BIOS SETUP UTILITY](image)

2) Move to the 'Security' tab and select the option 'Change Supervisor Password'.

![BIOS SETUP UTILITY](image)

3) Enter a password at the prompt and confirm it.
4) Once the Supervisor Password has been enabled, the User Access Level may be set to ‘Full Access’. This must be disabled since only the Supervisor can access the BIOS SETUP UTILITY.
6) Move to the ‘Exit’ tab and save the settings.

![BIOS SETUP UTILITY]

How to disable booting from removable media

1) In the BIOS SETUP UTILITY, move to the ‘Boot’ tab.
2) Select the option ‘Boot Device Priority’. Removable (and network) devices may be listed.

To disable a device, select it, press enter and select ‘Disabled’ in the drop-down menu.
4) Make sure that all removable drives are disabled.

5) Save settings and exit the BIOS SETUP UTILITY.